HYDROLOGY AND HYDRAULICS CRITERIA SUMMARY FOR WESTERN ALAMEDA COUNTY

Revised August 7, 1989

HYDROLOGY
AND
HYDRAULICS
CRITERIA
SUMMARY

WESTERN ALAMEDA COUNTY

· ·					
			·		
·					
		·			

INTRODUCTION

This Summary defines current District practice in the hydrologic and hydraulic design of flood control facilities in western Alameda County, and is written as a guide to be used by District engineers and engineers performing work for District review.

The criteria summarized here will be updated on a continual basis to reflect changes in District practice. The revision date of the Summary is shown on the inside cover and at the bottom left corner of each page. It is the responsibility of the user to determine that the Criteria Summary used for design is the current edition.

This Summary is intended for use by engineers familiar with generally accepted hydrology and hydraulic engineering design practice. Criteria not specifically detailed herein shall be determined in accordance with sound engineering practice. The Design Engineer should contact the Development Division in room 240 of the Public Works Agency with any questions regarding site specific design condiderations.

The Summary applies to western Alameda County only (Flood Control Zones 2, 2A, 3A, 4, 5, 6, 9, 12 and 13). It does <u>not</u> apply to eastern Alameda County (Flood Control Zone 7).

For information concerning Flood Control Zone 7 (eastern Alameda County) contact the Zone 7 offices located at 5997 Parkside Drive, Pleasanton, 94566, telephone 415/484-2600.

Copies of this Summary are available for \$10.00 each in room 240 of the Public Works Building, 399 Elmhurst Street, Hayward. Telephone 415/670-5480.

ACKNOWLEDGEMENTS

This Summary was prepared at the direction of:

Donald J. LaBelle

Director

Under the supervision of:

Scott A. Swanson

Principal Civil Engineer

By:

Michael Neary

Project Manager

Graphics and illustrations prepared by:

Connie Burgess Jane Ringot

Engineering Drafting Technician Engineering Drafting Technician

The material was prepared and reviewed by the Flood Control Criteria Summary Committee:

Michael Neary
Ralph Johnson
Jack Lindley
Wladimir Wlassowsky
Scott Taylor
Ted Templeton
Doug Farrell
Rick Baker
Roger Campbell

Committee Chair
Land Development
Land Development
Project Evaluation
Project Design
Project Design
Project Design
Environmental Services
Maintenance and Operations

TABLE OF CONTENTS

INTRODU	CTION	:
ACKNOWL	EDGEMENTS	iii
TABLE O	F CONTENTS	v
LIST OF	FIGURES	vii
GLOSSAR	Y	ix
1 .	Hydrology Design - Background	1
1.1	Design Storm for Primary Facilities	3
1.1.1	No Outflow	3
1.1.2	5-Year Storm	3
1.1.3	15-Year Storm	3
1.1.4	25-Year Storm	3
1.1.5	FEMA 100-Year Storm	3
1.1.6	Line-Specific Criteria	3
1.2	Design Storm for Secondary Facilities	3
1.2.1	10-Year Storm	3
1.3	Rational Method of Estimating Peak Runoff	3
1.3.1	Time of Concentration	4
1.3.1.1	Initial Time of Concentration	4
1.3.1.1.	1 Undeveloped Watersheds	4
1.3.1.1.	2 Urbanized Watersheds	5
1.3.1.2	Conduit Time	5
1.3.2	Rainfall Intensity	5
1.3.3	Runoff Coefficient - Background	5
1.3.4	Runoff Coefficient - Calculation	6
1.4	Flood Hydrograph	7
2	Hydraulic Design - Background	9
2.1	Beginning Water Surface for Primary Facilities	11
2.1.1	Primary Facilities - Tidal	11
2.1.1.1	No Outflow	11
2.1.1.2	5-Year Storm	11
2.1.1.3	15/25-Year Storm	11
2.1.1.4	FEMA 100-Year Storm	11
2.1.2	Primary Facilities - Non-Tidal	11

TABLE OF CONTENTS (Cont'd)

2.2	Beginning Water Surface for Secondary Facilities	11
2.2.1	Secondary Facilities Draining to Primary	
	Facilities - Tidal	11
2.2.2	Secondary Facilities Draining to Primary	
	Facilities - Non-Tidal	11
2.2.3	Secondary Facilities Draining Directly to the Bay	11
2.2.4	Secondary Facilities Draining to Alameda Creek	
•	and San Lorenzo Creek	11
2.3	Freeboard Requirements	12
2.4	Hydraulic Profile: Friction Losses	12
2.5	Hydraulic Profile: Junction Losses	13
2.6	Hydraulic Profile: Hydraulic Jumps	13
2.7	Limiting Velocities and Minimum Invert Slope	14
2.8	High Velocity Flows	14
2.8.1	Roll Waves	14
2.8.2	Slug Flow	14
2.8.3	Effects of Curvature	14
2.8.3.1	Superelevation	14
2.8.3.2	Cross Waves	14
2.8.4	Air Entrainment	15
2.9	Storm Water Holding Facilities	15
2.9.1	Retention Facilities	15
2.9.2	Detention Facilities	15
2.10	Debris and Sediment Rasins	16
3	Right-Of-Way	17
3.1	District Maintained Project Minimum Requirements	17
3.2	Minimum Set Back Requirements	17
4	Miscellaneous Standards	19
4.1	District Specifications and Standards	19
4.2	Minimums	19
4.2.1	Minimum Pipe Size	19
4.2.2	Minimum Reinforced Concrete Box Height	19
4.2.3	Minimum Bottom Width for Open Channels and Boxes	19

2/87

TABLE OF CONTENTS (Cont'd)

Maximums	19
Maximum EGL Elevation	19
Manhole Spacing for Underground Conduits	19
Side Drain Spacing for Open Channels	19
Side Slope for Earth Channels	19
Future Crossings	19
Undergrounding of existing district open channels	19
Cast-In-Place Concrete Pipe	19
References	21
	Maximum EGL Elevation Manhole Spacing for Underground Conduits Side Drain Spacing for Open Channels Side Slope for Earth Channels Future Crossings Undergrounding of existing district open channels Cast-In-Place Concrete Pipe

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
.1	Zone Boundary Map	25
2	Standard Project Flood	26
3	Sample Hydrology Calculation Form	27
4	Overland Flow Velocity Chart	28
5	Roof to Gutter Time Chart	29
6	Gutter Flow Chart	30
7	Natural Channel Flow Chart	31
8	Unit Rainfell Intensity Chart	32-33
9	Mean Annual Precipitation (Copy)	34
10	Runoff Factor Adjustment Chart	35 - 37
11	Alameda County Type I Storm Distribution	38
12	Bay Area Datum Planes	39
13	Tidal Summary	40-42
14	Design Water Surface Summary	43
15	General Guidelines	44-45
16	Setback Criteria	46
MA-1 80	Mean Annual Precipitation	Insert

GLOSSARY

The following is a list of some of the abbreviated terms found in this Summary.

Federal Emergency Management Agency

Flood Insurance Study

EGL

Energy Grade Line

EGL

Hydraulic Grade Line

Cubic Feet Per Second

Mean Annual Precipitation

MHHW

Mean Higher High Water

1. HYDROLOGY DESIGN

BACKGROUND

The two primary methods used by the District to determine design discharges are the modified Rational method and the unit hydrograph method. The Rational method is intended for use on small watersheds of less than 640 acres (one square mile), while the unit hydrograph method is intended for use on larger watersheds.

Waterways within the District are classified in three ways:

- MAJOR FACILITIES have a drainage area of ten square miles or more. Only Alameda Creek, San Lorenzo Creek and San Leandro Creek fall into this category.
- o <u>PRIMARY FACILITIES</u> have a drainage area between fifty acres and ten square miles. These waterways or conduits are generally those designated for District maintenance.
- SECONDARY FACILITIES have a drainage area less than fifty acres and are conduits or small channels which are normally maintained by the local jurisdiction (for example, Cities or County maintained roads.)

For Primary facilities there is often more than one design storm to be considered in the analysis of the facility. This is because primary facilities must be designed to contain the Federal Emergency Management Agency (FEMA) 100-year storm in FEMA study areas as well as provide a DESIGN STORM water surface to which secondary facilities drain. All applicable design storms must be determined and measured against the appropriate hydraulic criteria to determine which storm will control under the varying hydraulic circumstances. It will be necessary to identify the system's Flood Control Zone (See Figure 1, Page 25), whether the facility is affected by tidal backwater, and whether the system was covered by the FEMA Flood Insurance Study (FIS) in order to determine the appropriate design storm or storms.

The design storm for primary facilities is a storm with a 15-year recurrence interval, except in Zone 12 where a 25-year storm interval is used. This storm is used to calculate a backwater curve using Mean Higher High Water as the beginning water surface at the Bay. In those reaches where primary facilities are subject to tidal backwater effects, a five-year storm must also be calculated and run against the 100-Year Tide for a second hydraulic grade line. The higher of these two water surfaces is to be used in design.

In addition, all facilities that are part of the FEMA Flood Insurance Study must be designed to contain the FEMA 100-year storm using FEMA criteria. Where these facilities are subject to tidal backwater effects, two water surface profiles must also be calculated and compared. The 100-Year Tide is run flat (no outflow from the channel), and the FEMA 100-Year flow is run against a beginning water surface of Mean Righer High Water. The higher of these two water surfaces controls for design. These criteria have been incorporated into this Summary.

The design storm for secondary facilities is one of 10-Year recurrence interval, regardless of zone.

The design of major waterways is beyond the scope of this summary. Their design shall be subject to the criteria established by the Deputy Director of Public Works - Design, at the time of design.

L.E.

LJ.

DESIGN STORM FOR PRIMARY FACILITIES.

- 1.1.1 NO OUTFLOW. All zones. All lines subject to tidal backwater effects and covered by the FEMA study.
- 1.1.2 <u>5-YEAR STORM</u>. All zones. All lines near the bay subject to tidal backwater effects.
- 1.1.3 <u>15-YEAR STORM</u>. All Zones except Zone 12. For all drainage areas up to ten square miles.
- 1.1.4 <u>25-YEAR STORM</u>. Zone 12 only. For all drainage areas up to ten square miles.
- 1.1.5 FEMA 100-YEAR STORM. All Zones. For all reaches of the flood control system covered by the FEMA flood insurance study. The flows to be used in design are found in the Flood Insurance Study for the particular line. These studies are available at the District offices and from FEMA.
- 1.1.6 LINE SPECIFIC CRITERIA.

Alameda Creek, Bay to Zone 7 Boundary: STANDARD PROJECT FLOOD.*

San Lorenzo Creek, Bay to junction of Cull and Crow Canyon Creeks: STANDARD PROJECT FLOOD.*

San Leandro Creek, Bay to Lake Chabot: 2800 cfs.

- * See Figure 2, Page 26, for calculating the Standard Project Flood.
- 1.2 DESIGN STORM FOR SECONDARY FACILITIES.
- 1.2.1 10-YEAR STORM. All Zones. All secondary facilities.

RATIONAL METHOD OF ESTIMATING PEAK RUNOFF.

A modified Rational Formula shall be used to determine the peak discharge of a watershed for areas up to 640 acres (one square mile). All hydrology calculations using the Rational Method shall be entered into Form 21.2 for District maintained projects and for in-tract drainage submittals. A reduced copy of this form is shown in Figure 3 on Page 27. Copies of the form to be used are available at the District's Elmhurst Street offices.

The overall watershed shall be broken down into smaller areas which contribute to local points of concentration. The boundaries shall be established based upon local topographic boundaries such as ridges, streets, existing drainage systems, etc, using good engineering practice.

The design flow rate shall be calculated using the District Modified Rational Formula, which is:

Eq. 1-1

where:

- Q is the design runoff flow rate in cubic feet per second;
- i is the rainfall intensity in inches per hour;
- C' is a runoff coefficient modified by slope and rainfall intensity;
- A is the drainage area in acres.

TIME OF CONCENTRATION. 1.3.1

The time of concentration is the time required for the runoff from the most remote region of the watershed to reach the point of concentration at which the flow is to be calculated. It is composed of two parts, the initial time of concentration, sometimes referred to as the inlet time, and the conduit time. A minimum time of concentration based upon the hydraulic conditions which maximize flow velocities shall be used to design the flood control system.

INITIAL TIME OF CONCENTRATION. The initial time of con-1.3.1.1 centration (Initial T) is that time required to wet the surface, fill depressions and establish runoff at the first point of concentration in the watershed. Often this first point of concentration is the first inlet of the storm water system. This time will seldom be less than three minutes nor more than 20 minutes. The Initial Time of Concentration shall be determined using the following criteria:

UNDEVELOPED WATERSHEDS. 1.3.1.1.1

Initial
$$T_c = \frac{L}{60(V)}$$

Eq. 1-2

Where:

T = Time of concentration in minutes L^C = Overland flow length in feet

V = Overland flow velocity in feet per second from Figure 4, Page 28.

1.3.1.1.2 URBANIZED WATERSHEDS.

In urbanized watersheds the initial time of concentration shall be taken as a *roof-to-gutter* time plus the time required for the water to flow from the upper most part of the drainage basin to the initial point of concentration.

Roof-to-gutter time is a function of ground slope and type of facility and therefore varies. See Figure 5, Page 29, to find the roof-to-gutter time to be used in design.

The time for the water to reach the first inlet shall be estimated using the gutter flow chart (Figure 6, Page 30). Other charts for flow in small conduits or gullies, when used, shall be referenced.

These two times shall then be added to find the Initial Time of Concentration.

1.3.1.2 CONDUIT TIME.

Conduit time is the length of time required for the water to flow from one point of concentration, or inlet, to the next. The chosen average velocity or weighted incremental velocities must accurately reflect the hydraulic conditions within the storm water system. Where the flow takes place in natural streams, the velocity should be determined using Figure 7. Page 31, or other appropriate method.

1.3.2 <u>RAINFALL INTENSITY</u>.

Rainfall intensity is the product of the Unit Rainfall Intensity Factor and the Mean Annual Precipitation (MAP) and is expressed in inches per hour.

The unit rainfall intensity factor for the appropriate time of concentration and storm recurrence interval is found in Figure 8, Pages 32 and 33.

The mean annual precipitation is found on the District's isohyetal map, file No. MA-180. A copy of this map is included at the back of this Summary, and a reduced copy is shown in Figure 9, Page 34. The MAP to be used is located at the center of gravity of the entire drainage area above the specific point of concentration.

1.3.3 RUNOFF COEFFICIENT - BACKGROUND.

A modified runoff coefficient C' is to be used in the design of flood control facilities for the District. This modified coefficient is made up of a basic runoff coefficient C, a ground slope factor Cs, and a rainfall intensity factor Ci.

The basic runoff coefficient shall be chosen to reflect the ultimate development of the drainage area. This will be based on City/County General Plans. If General Plans are not available, then a reasonable ultimate land use shall be assumed.

()

IJ

The slope adjustment factor Cs is used to adjust for increases in runoff as the average slope of the incremental drainage area increases. Note: the slope to be used to find Cs is not the slope of the incremental waterway but that of the land draining to that waterway.

The intensity factor Ci is used to reflect the decrease in soil permeability that can be expected with increased rainfall intensity.

1.3.4 RUNOFF COEFFICIENT - CALCULATION.

The formula for calculating the modified runoff coefficient is:

$$C' = C + Cs + Ci$$
 Eq. 1-3

where:

_ <u>C</u> _		PERCENT APERVIOUS
0.2*	Undeveloped land, Parks, Golf courses	oz
0.4	Single Family Residential	30 2
0.6	Condominiums, Apartments, Institutions	
	Mobile Home Parks, Light Industrial	55 z
0.7	Medium Industrial	70 2
0.8	Commercial, Heavy Industrial	85Z
0.9	Impervious (Streets, Parking lots,	
	Roof tops	1007

* The basic runoff coefficient shall be increased in areas with soils having low permeability. .

Note: C is computed based on weighted area times runoff using 0.2 for open space and 0.9 for impervious areas.

$$Cs = \frac{(0.8 - C)(Ln(S - 1)) S^{0.5}}{56}$$

$$Ci = \{0.8 - (C + Cs)\} | 1 - \frac{1}{(1/e^{i}) + (Ln(i + 1))}|$$
Eq. 1-5

and where:

- C` is the design runoff coefficient.
- C is the base weighted runoff coefficient.
- Cs is the slope adjustment factor.
- Ci is the rainfall intensity adjustment factor.
- S is the average ground slope of the incremental drainage area in percent.
- i is the design storm rainfall intensity (inches/hour).

C' may be found using Figure 10, Pages 35 to 37, using the selected basic weighted runoff coefficient C, known ground slope and rainfall intensity (in inches per hour).

The modified runoff coefficient (C') will never exceed 0.80 when calculations are based on land use. When calculations are based on type of surface (for example, when calculating the runoff from a small, impervious area such as a parking lot) the basic runoff coefficient (C) shall be determined in accordance with sound engineering practice, and may often exceed 0.80.

1.4 FLOOD HYDROGRAPH.

The Soil Conservation Service (SCS) Unit Hydrograph Method shall be used to determine the peak discharge for drainage areas greater than 640 acres and whenever the volume of water during a design storm is required. The temporal rainfall distribution used in this analysis shall be the Alameda County Type I Storm Distribution for the 24-hour accumulated rainfall. The ordinates for this distribution are provided in Figure 11, Page 38. Runoff curve numbers for hydrologic soil-cover conditions may be taken from Reference 7, Table 9.4, Page 9.8. In lieu of determining the flood hydrograph and its associated peak discharge by hand computation, the SCS TR-20 or Army Corps of Engineers HEC1 hydrologic computer modelling programs using Alameda County Type 1 Storm distribution data may be used. See references 1 and 7 for more detailed explanation of the methods.

	:

2. HYDRAULIC DESIGN

BACKGROUND

The District uses Mannings' equation to calculate friction losses, and the pressure-momentum method and energy equations to calculate major junction or section change losses (the higher water surface resulting from the use of these equations is to be used). For uncommon design problems, the design engineer shall provide suitable tests or references as needed to confirm the proposed design.

Primary facilities serve two basic purposes: they <u>contain</u> the large (100-year recurrence) storms, and they <u>provide</u> a <u>design storm</u> <u>water surface</u> that is adequate for the positive drainage of secondary facilities.

Secondary facilities drain smaller watersheds and are designed to drain positively to the design storm water surface in the primary facility.

Some secondary facilities drain directly to the Bay. These facilities are designed to drain to the 100-Year Tide.

The beginning water surface to be used in calculating hydraulic profiles is dependent on the type of facility (primary or secondary), the design storm recurrence interval, and whether the facility is subject to tidal backwater effects.

Figure 12 on Page 39 is a list of the various datum planes used by different jurisdictions in the Bay Area. Figure 13 on Pages 40 to 42 illustrates tidal elevations to be used in design. Figure 14 on Page 43 is a summary of the design water surfaces described in this chapter.

DESIGN WATER SURFACE FOR PRIMARY FACILITIES.

The following beginning water surfaces shall be used when calculating design water surfaces for primary facilities:

- 2.1.1 NO OUTFLOW. Use the 100-Year Tide.*
- 2.1.2 <u>5-YEAR STORM</u>. Use the 100-Year Tide

15/25-YEAR STORM. Use Mean Higher High Water (MHHW).

FEMA 100-YEAR STORM. Use Mean Higher High Water (MHHW).*

* These are FEMA criteria required in all reaches of lines that are part of the FEMA Flood Insurance Study.

Mone: In areas subject to tidal influence, the design water surface shall be the higher of the 5-Year and 15/25-Year profiles as calculated above.

2.1.5 NO TIDAL INFLUENCE.

Use the closest known downstream water surface for the required design storm. If no water surface is known in the primary facility, one shall be calculated beginning at the nearest point of hydraulic control or at the Bay, if necessary, using the above criteria.

DESIGN WATER SURFACE FOR SECONDARY AND OTHER FACILITIES.

The design water surface for all secondary facilities is the 10-Year Hydraulic Grade Line. The following beginning water surfaces shall be used when calculating water surfaces for secondary facilities.

2.2.1 SECONDARY FACILITIES DRAINING TO PRIMARY FACILITIES.

Use the current District Design Water Surface. If none is available, design shall conform to the Freeboard Requirements of Section 2.3 herein.

2.2.3 <u>SECONDARY FACILITIES DRAINING DIRECTLY TO THE BAY.</u>

Use the 100-Year Tide

2.2.4 PRIMARY AND SECONDARY FACILITIES DRAINING TO MAJOR FACILITIES (ALAMEDA, SAN LEANDRO AND SAN LORENZO CREEKS).

Use the current District Design Water Surface.

NOTE: For Secondary Facilities draining to Primary Facilities in FEMA studied areas only, the HGL(10) shall also be calculated using the FEMA HGL(100) in the Primary Facility as a starting water surface. The HGL(10) in the Secondary Facility shall not exceed Top of Curb.

		r		
•				
•				
				•
				·

2.3	FREEROARD	REQUIREMENTS	for	e11	facilities	shall	he	28	follows:	
L.J	LVECTOVY	KEYULKELENIJO	TOT	GTT	Tサバギャナナナ	****	υ¢	a 0	TOTTOMO:	

	<u>FACILITY</u>	FREEBOARD (FT.)	FROM DESIGN HGL UP TO:
	Closed Conduit Non-leveed Channels	1.25	Top of Curb
	District Design Stor	m 1.00	Top of Bank
	FEMA Q(100)	0.00	Top of Bank
	Leveed Channels	•	
	Tidal Non Tidal	3.00	Top of Levee
	District Design Sto	rm 1.00	Top of Levee
	FEMA Q(100)	3.00	Top of Levee
	FEMA Q(100)	4.00	Top of Levee within
			100 feet downstream of constrictions
	FEMA 0(100)	4.50	Top of Levee within
	4(100)		100 feet upstream of constrictions
	Street Creedings	2 00	Soffit(top of conduit)
	Street Crossings	• • • • • • • • • • • • • • • • • • •	or provide 100-year
			design storm capacity
	Bayfront Levees	1.00*	
	Retention/Detention Pond	d1.00	Top of Ground
			to the current FEMA re- : 65.10(a)(1)(iii), which
2.4			
2.4	HYDRAULIC PROFILE: FRICused to calculate hydrau follows:	CTION LOSSES. The alic profiles. The	Mannings Formula shall be e friction value "n" is as
2.4	used to calculate hydrau follows:	CTION LOSSES. The ulic profiles. The	Mannings Formula shall be e friction value "n" is as
2.7	used to calculate hydra	CTION LOSSES. The alic profiles. The	e friction value *n* is as
2.7	used to calculate hydrau follows: TYPE OF FACILITY Reinforced Concrete Pipe	ulic profiles. The	e friction value *n* is as *n*
2.7	used to calculate hydrau follows: TYPE OF FACILITY	ulic profiles. The	e friction value *n* is as *n*
2.7	used to calculate hydrau follows: TYPE OF FACILITY Reinforced Concrete Pipe	ulic profiles. The	e friction value *n* is as *n* 0.012
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities Corrugated Metal Pipe	ulic profiles. The	#n* 0.012 0.014
2.7	used to calculate hydrau follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities	ulic profiles. The	#n* 0.012 0.014
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities Corrugated Metal Pipe	alic profiles. The	#n* 0.012 0.014 0.021
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities Corrugated Metal Pipe Annular	alic profiles. The	#n* 0.012 0.014 0.021
2.7	used to calculate hydrau follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities Corrugated Metal Pipe Annular	alic profiles. The	#n* 0.012 0.014 0.021 0.018 0.015
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities Corrugated Metal Pipe Annular	alic profiles. The	#n* 0.012 0.014 0.021 0.018 0.015
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities. Secondary Facilities Corrugated Metal Pipe Annular	e tone	#n* 0.012 0.014 0.021 0.018 0.015 0.017
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities Secondary Facilities Corrugated Metal Pipe Annular	e	#n* 0.012 0.014 0.021 0.018 0.015 0.017
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities Corrugated Metal Pipe Annular	e	#n* 0.012 0.014 0.021 0.018 0.015 0.017
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities Secondary Facilities Corrugated Metal Pipe Annular Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Secondary Facilities Facilit	e tone	*n* 0.012 0.014 0.021 0.018 0.015 0.017
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities Secondary Facilities Corrugated Metal Pipe Annular Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Secondary Facilities Facilit	e tone	*n* 0.012 0.014 0.021 0.018 0.015 0.017 0.015 0.014 Consult manufacturers
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities . Secondary Facilities Corrugated Metal Pipe Annular	e tone	*n* 0.012 0.014 0.021 0.018 0.015 0.017
	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities Secondary Facilities Corrugated Metal Pipe Annular	tone	e friction value "n" is as "n" 0.012 0.014 0.021 0.018 0.015 0.017 0.015 0.014 Consult manufacturers specifications.
	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities Secondary Facilities Corrugated Metal Pipe Annular Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Smooth-troweled Secondary Facilities Concrete-Lined Channels Secondary Facilities Earth Channels Smooth Geometric Secondary Facilities Earth Channels Secondary Facilities	tone	e friction value "n" is as "n" 0.012 0.014 0.021 0.018 0.015 0.017 0.015 0.014 Consult manufacturers specifications. 0.030 minimum
2.7	used to calculate hydrate follows: TYPE OF FACILITY Reinforced Concrete Pipe Primary Facilities Secondary Facilities Corrugated Metal Pipe Annular	tone	e friction value "n" is as "n" 0.012 0.014 0.021 0.018 0.015 0.017 0.015 0.014 Consult manufacturers specifications. 0.030 minimum

Ŋ

For curved channels or closed conduits, the "n" value should be increased as follows:

$$+n = \frac{0.29}{R}$$
 Eq. 2-1

where:

+n is the adjustment (to be added) to the "n" selected for the facility

R is the Radius at center line in feet.

Note: For radii less than 20 feet bend losses shall be calculated.

HYDRAULIC PROFILE: JUNCTION LOSSES. At points of change in the hydraulic parameters of flow rate or section, the HGL and Energy Grade Line (EGL) shall be calculated considering velocity heads and losses due to bends, entrances, exits, turbulence, etc. The Pressure-Momentum method should be used to calculate the change in water surface at major junctions and section changes with a corresponding recalculation of the EGL, as follows:

$$y = \frac{Q_2 V_2 - Q_1 V_1 \cos Q_1 - Q_3 V_3 \cos Q_3}{g \left| \frac{A_1 + A_2}{2} \right|}$$
 Eq. 2-2

where:

y = Change in hydraulic gradient through junction, in feet.

Q = Flow in cubic feet per second (cfs).

V = Velocity, feet per second.

A = Area of flow, square feet (ft²)

93 ** Angle of convergence between the center line of the main line and the center line of the lateral (degrees).

• Angle of deflection between the upstream and downstream center lines, in degrees.

g = Acceleration due to gravity, 32 ft per sec².

Energy equations should be used to calculate the effect a section change has on the EGL and compared with the Pressure-Momentum results. The higher of the two is to be used. The District's hydraulic programs do this automatically.

HYDRAULIC PROFILE: HYDRAULIC JUMPS. Hydraulic jumps occur when the depth of flow changes rapidly from a low stage to a high stage. Where hydraulic jumps are likely to occur, such as where the slope or cross section of the facility changes in supercritical flow, their location and energy losses shall be determined and considered in the design. See Reference 2, pp 393-434.

LIMITING VELOCITIES AND MINIMUM INVERT SLOPE. 2.7

FACILITY	MIN.VELOCITY	MAX.VELOCITY	MIN.SLOPE	
	ft/sec	ft/sec	ft/ft	
Earth Channels Concrete Lined Channels >Closed Conduits	2.0	14.0	0.0007	

Where velocities are greater than 14 ft./sec., special criteria shall be established on a case by contact that ing, maintenance or uneven flow conditions.

> HIGH VELOCITY FLOWS which result from facilities on steep slopes shall consider roll waves and pulsating flows in the design.

- ROLL WAVES are created when the normal depth of flow is within 2.8.1 ten percent of the critical depth for the section. This condition should be avoided.
- SLUG FLOW is a pulsating flow of waves which tend to amplify. 2.8.2 The Vedernikov Number, or V-No., is a measure of the tendency for supercritical flow stability. Where the V-No. is greater than unity, any wave created in the facility will tend to amplify up to a maximum height of 1.65 times normal depth, given a suitable length of run. Where this condition cannot be avoided, closed conduits shall be sized such that normal depth does not exceed half the depth of the conduit, and open channels shall be lined at least to 1.70 times normal depth. See Reference 2, pp. 210-211.
- EFFECTS OF CURVATURE. In open channels of curved alignment, 2.8.3 the rise in the water surface due to superelevation and cross waves shall be considered.
- Superelevation is the rise in water surface around a bend 2.8.3.1 in a channel due to centrifugal force. The rise in the water surface is given by:

$$h = \frac{v^2 b}{2gr_c}$$
 Eq. 2-3

where:

h = rise in water surface, in feet.

V = velocity, feet per second.

b - channel width at the water surface.

r = radius of channel centerline.

Cross Waves occur in supercritical flow and should be 2.8.3.2 considered in design. See Reference 2, Page 448.

2.8.4 <u>AIR ENTRAINMENT</u>. Velocities above 14 ft./sec. entrain air. An increased depth may result, with this depth being related directly to the increase in the volume of water.

$$A_{a} = 10 \left| \frac{0.2 \text{ V}^{2}}{\text{g R}} - 1 \right|^{0.5}$$
 Eq. 2-4

where:

- A is the increase in flow area attributable to air entrainment in percent.
- V is the velocity at normal depth in feet per second.
- R is the hydraulic radius without air entrainment.
- g Acceleration due to gravity, 32.2 ft per sec .

See Reference 2, p. 36

- 2.9 STORM WATER HOLDING FACILITIES.
- 2.9.1 Retention Facilities are designed to contain approximately 25 percent of the Mean Annual Precipitation regardless of the design storm frequency of the drainage facilities entering the facility. The facility shall be designed such that the water surface returns to its original elevation within 24 hours. The volume of storm water shall be calculated as follows:

$$Vw = 0.021 PA$$
 Eq 2-5

where:

Vw is the volume of water to be stored in acre-feet.

- P is the annual precipitation at the center of gravity of the drainage basin in inches.
- A is the drainage area in acres.
- Detention Facilities are those facilities designed to reduce the rate of discharge to an outlet drainage facility. The discharge shall be controlled by the outlet works such that the predetermined discharge rate from the detention facility, and the peak flow in the receiving facility, are not exceeded. The required pond storage shall be computed using flood routing techniques with a unit hydrograph. The SCS method (ie., TR-55, etc.) may be used to develop storm hydrographs and routing calculations when designing storage and outlet drainage works. The pond shall be designed such that the water surface returns to its base elevation within 24 hours.

One of the common uses for a Detention Facility is to limit the augmented discharge from a development site. When such a facility becomes a permanent drainage feature, assurances for its continued maintenance in its designed capacity must be provided for; ie., maintenance by the District, another public agency, or private party through a maintenance agreement.

Several types of detention facilities are acceptable to the District for controlling on-site the augmented storm discharge:

- o Parking lot detention for industrial/business development. Using this method requires the filing of notice that the area is subject to storm water ponding. Parking lots shall provide pedestrian access through the ponded areas. Depths of ponding shall not exceed four inches (4*).
- c Conduit storage can be utilized by oversizing the underground drainage facilities. Care should be taken to prevent siltation problems.
- o Channel storage can be utilized by oversizing the open channel facilities. Care again should be taken to prevent siltation problems, and allowances must be made for a minimum capacity at a maximum silt buildup.
- o 'inlti-purpose facilities can be used as detention facilities such as park areas, tennis courts, parking areas, existing ponds and wetland areas, and landscaped areas.

2.10 <u>DEBRIS AND SEDIMENT BASINS</u>.

Debris and sediment basins may be required in the design of certain flood control facilities. The need for such structures shall be determined on a site by site basis by the Director of Public Works.

3. RIGHT-OF-WAY

- 3.1 <u>DISTRICT MAINTAINED PROJECT MINIMUM RIGHT OF WAY REQUIREMENTS</u> are as shown on Figure 15, Pages 44 and 45, for District projects.
- 3.2 <u>MINIMUM SET BACK REQUIREMENTS</u>. Under the Alameda County Watercourse Protection Ordinance, the minimum requirements for set backs are as shown on Figure 16, Page 46. See also Reference 10.

		÷	

4. MISCELLANEOUS STANDARDS

<u>DISTRICT SPECIFICATIONS AND STANDARDS</u> for backfill, concrete products, pipe, etc., and District Design Guidelines shall be used where applicable.

MINIMUMS. These minimums cover items not covered elsewhere in this summary.

- 4.2.1 MINIMUM PIPE SIZE shall be 12-inches in diameter.
 - 2 <u>MINIMUM REINFORCED CONCRETE BOX HEIGHT</u> shall be seven feet where grades permit.
- 4.2.3 MINIMUM BOTTOM WIDTH FOR OPEN CHANNELS AND BOXES shall be four feet for earth sections and six feet for concrete sections whenever possible.

<u>MAXIMUMS</u>. These maximums cover items <u>not</u> covered elsewhere in this summary.

- 4.3.1 MAXIMUM EGL ELEVATION shall be below the top of bank in channels and below ground in closed conduit systems wherever possible.
- 4.3.2 MANHOLE SPACING FOR UNDERGROUND CONDUITS shall not exceed 400 feet on center.
- 4.3.3 SIDE DRAIN SPACING FOR OPEN CHANNELS shall be such that a minimum two percent (2%) slope is maintained between grade break and side drain inlet, and in no case shall be greater than 400 feet.
- 4.3.4 <u>SIDE SLOPE FOR EARTH CHANNELS</u> shall be no steeper than two and one half (2-1/2) horizontal to one (1) vertical.

FUTURE CROSSINGS of District open channels shall be either clear span or shall not adversely increase the water surface elevation for any cross-section of the channel upstream of the crossing for the appropriate design storm.

UNDERGROUNDING OF EXISTING DISTRICT OPEN CHANNELS shall not adversely increase the water surface elevation for any cross-section of the channel upstream for the appropriate design storm.

4.6 <u>CAST-IN-PLACE CONCRETE PIPE</u>. Precast reinforced concrete pipe is the accepted material for concrete culverts. The use of Cast-In-Place pipe is subject to the approval of the Deputy Director of Public Works - Design, on a case by case basis.

					ı
					,

5. REFERENCES

- U.S. Department of Agriculture Soil Conservation Service, "A Method for Estimating Volume and Rate of Runoff in Small Watersheds, SCS - TP -149".
- 2. Chow, Ven Te, Open-Channel Hydraulics, 1959, McGraw-Hill Book Company, New York.
- 3. Water Resources Council, "A Uniform Technique for Determining Flood Flow Frequencies", December 1967.
- 4. Department of Water Resources, "Rainfall Analysis for Drainage Design Volume I, II, & III", October 1976.
- 5. Department of Water Resources, "Rainfall Depth-Duration-Frequency for California".
 - U.S. Weather Bureau and Soil Conservation Service, "Rainfall Intensities for Local Drainage Design in Western United States, Technical Paper No. 28".
- 7 U.S. Department of Agriculture, Soil Conservation Service, "National Engineering Handbook, Section 4, Hydrology," March, 1985, 210-VI-NEH-4.
- 8. Barnes, Harry H., Jr., Roughness Coefficients of Natural Channels, U.S. Geological Survey, Water Supply Paper No. 1849, Second Printing, 1977.
- 9. United States Department of Agriculture, Soil Conservation Service, *Engineering Handbook No. 5, Hydraulics, Supplement B, 1956.
- 10. County of Alameda, *Watercourse Protection Ordinance of Alameda County-, *Ordinance Code of Alameda County, Title 7, Chapter 10.
- 11. U.S. Army Corps of Engineers, San Francisco District, "San Francisco Bay Tidal Stage vs. Frequency Study," October, 1984.

	Þ				

APPENDIX

•	•			

NEAMEDA COE NEVELOOD CONTROL AND WATER CONSERVAÇION DESTRICT

STANDARD PROJECT FLOOD FIGURE 2

C Tee Interest And Interest And Interest Act								141E							.: .	-		
TONE LINE DATE BY CK BY RAINFALL REF. INITIAL TC P to be taken at NYDROLOGY CALCULATIONS RAINFALL REF. INTROCUCRY REF. INTROCUC	•					1									The same			
TONE LINE DATE BY CK BY RAINFALL REF. INITIAL TC P to be taken at NYDROLOGY CALCULATIONS RAINFALL REF. INTROCUCRY REF. INTROCUC															· } '			
COMMENTS P CK BY RAINFALL INCREMENTAL AREA ACCUMULATED AREA O C Tc- IN P	·——	LP NO								:								
AREA AA AREA COMMENTS P O TC+ DISTRICT FACTOR INCREMENTAL AREA ACCUMULATED AREA AA AREA AA AREA COMMENTS COMMENTS P O TC+ DISTRICT FACTOR INCREMENTAL AREA ACCUMULATED AREA AA AREA COMMENTAL AREA ACCUMULATED AREA ACCUMULATED AREA AA AREA COMMENTAL AREA COMM								i Najya sa						÷		LTNE	X	ZONE
COMMENTS P INTERIOR STATE AND COMMENTS COMMENTS P INTERIOR STATE AND COMMENTS COMMENTS P INTERIOR STATE AND COMMENTS AREA AA A														3 Y	CK B	8Y		DATE
COMMENTS O O Tex Initialization Initiali	center	at ce	be taken	7 60		LCULA	CAL	LOGY	HYDRO									
COMPANY OF THE STREET SAPEN STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN SAPEN C. AAC. ACRES EAC. OF THE STREET SAPEN S		١	ATED	ACCUMUL		AREA	TAL	EMENT	INCR		u	INFA	R/					
	ESIGN	Q=1X/ DESI		ΣA				AVE	AA.	AREA	INTENSITY (In)-(P) 1979	MAP D**	imelty Impersory	Tc*	0		CC	
	() () () () () () ()	Q(E AC.	ACKES	AAL				- CLALS			·						
			—				i î	# 1352			r carry			3				
				\$ 7 EN	ير ابيني ک			56-25 1842								4		
			grif.	A STATE OF THE STA	49 0			32	ا ال	$\nabla(d$				4,1				
		-							* 45 *** 	7		20	No Set					
		ļ ——					_],	124		I							<u> </u>	
				9 4	Tin Weld		Ä, A) .							, j		3 7 , 7	
							-	7 12 12	8			;	400	- USG 4 1.	16 V 5 V		-	
				årfr.⇒		~ 1	+		***									
					7. (1.42)		\mathcal{H}_{l}	ď				-	eser (1			
						11	42	4			***							······································
					A		. T		- <u> </u>	Pay. Disk	/		we die				 	
					人の		No.	V		<u>ખોતાનું તે</u>	إيسانها فالأرابا	1.4.		100				
								Aga						144				
				10		-1												
							7		- 23							5-44) 		
			C. Ajes	15/10/11/11	Afrika da da	e (Jakot /	***	in the same							4-4			
			_			1		, , , , , , , , , ,							1		4	
		 	ΔD	<u> </u>											┫		 	
The second of th			<u> </u>		F 73		7	2425							╂╌┤			
				ing communication	adauta në Likaran				i sugar s				ه ه مند آند					
			<u> </u>	4-1	-4-5-4		7,00			,Z					_ H1			
					•						· .					-	100	. '
				I			. 3											

DISCHARGE IN C.F.S

ALAMEDA COUNTY FLOOD CONTROL

AND

WATER CONSERVATION DISTRICE

NATURAL CHANNEL FLOW CHART

UNIT RAINFALL INTENSITY FACTOR CHART, I_{\times} PER HOUR

	••	***				* *****	*****	*****	P0		******	****	* *****	******	*****		**** ****	** *****	*****	******
	1	T¢	Ħ			CENCE_I	PERVAL	السبب	I To I	!	_ RECURE	ENCE	PTERVA	L1	70	; I	tlcJ	OLDICZ	MILEVA	
	1.4		11	5 TRE	10 TRE	3 15 Y)W	25 TES	100 TRS:	i (anta) i	i 5 1/16	10 YES	15 TM	25 Y35	100YAS:	i (mag)	(1 \$	THE 10 Y	US 15 TRE	25 TM	1.00 TRS
	-			100000	*****	*****		*****	******		*****	*****	*****	*******	*****					******
	1			. 184	. 21 7	- 234	. 264	. 327 1	1 41 [- D41	.048	. 052	. 05+	. 973	: 62	11 .5	25 . C34	.036	. 041	.051 (
	1		ш		. 195	. 209	. 276	. 292 I	E 42 13	.040	. 048	. 051	. 05#	.072	1 87		28 . 034	. 036	. 041	. 051 I
	1		11		. 171	.102	. 206	. 255 1	1 43 11	.040	- 047	. 051	-057	. 071	. 83		28 . C3 (. 036	. 041	. 050 1
			11		. 152	.163	. 184	. 228 f	1 44 11	.039	. 047	. 050	. 056	. 976 :	. 94	ti .D	26 .037	. 036	. 040	. 050 1
	1	5	11	116	.138	.148	. 167	. 207 1	1 45 11	.039	. 046	. 049	. 036	. C69 (£ 85		28 .033	. 025	.040	. 050 1
	•		Ħ	. 107	.127	. 136	. 154	. 190 1	1 45 11	. 638	. 046	. 049	. 055	. 060 +	1 25		28 .033	. 035	. 040	. 049 1
	1		11	. 100	.110	.176	. 143	.177 1	t 47 Li	- 038	. 045	.040	. 955	. 944 (1 67		28 .033	. 035	. 040	049 1
	•	-	* *	. 693	. 111	.119	. 134	.166 /	I 49 11	. 038	. 045	.048	. 054	.067 (27 _033	- 015	. 039	.049 1
	1		+1	, çês	. 105	-113	. 126		1 45 11		. 044	.047	- 053	. 065 t	1 89	i .s	27 .032	.075	. 039	.048 (
	ŧ	10	11	., 684	. 091	. 106	. 130	.149 :	t 50 il	. 037	. 044	.047	.053	. 065	90	1 . 3:	27 .032	. 074	. 039	.048
	ŀ		11	. 080		101	. 114		1 51 11		. 043	. 046	- 052	.065	91	1 .03	7 -032	. 034	. 631	.048
	ı	12		- 676	. 091	. 097	.116		52 (1		. 843	. 046	. 052	-064 1	92	F . 02	17 . 632	. 034	. 038	.04E I
	•	11		. 073	. 067	. 093	. 105		57. ()		. 042	. 045	. 051	.354	93 (1 .0	7 .032	. 034	. 038	. 047 I
	ŀ	14	-	. 071	.004	. 096	. 101	.126 ()		. 035	. 042	-045	. 051	. 563 F (94 1	1 . C:		. 034	. 036	.047 1
	1	15	1 6	. 068	. 061	. 007	. 098	.121 1 1	55 11	. 025	. 042	.044	. 050	.061	95 4	1 .02	. 031	. 033	036	.047 !
														•						
		16		. 066	. 078	. 044	. 095	-117 1		. 035	. 041	.044	. 252	26:				. 033	- D3 8	- 047 1
		17		. 064	. 076	.001	. 092	-114			.041	.044	. 045	1261				. 073	. 037	.046 :
		10		. 062	. 074	. 079	. 089	.111 1		. 034	. 041	. 043	. 045	261				. 033	. 037	.045 (
		19		. 060	. 072	. 977	. 987	.100 f I		. 034	. 040	. 043	. 049	36C :				. 033	. 037	046 :
	ı	30	* 1	. 059	. 070	. 075	. 064	.105 / 6	60 11	. 934	. 040	. 043	. 346	366	100 (£ .033	. 032	. 037	- 046 t
		21																		
		33		. 057	.068	. 073	. 082	.102			. 039	. 042	. D40	359				.037	. 037	.045 (
	•	23		. 056 . 055	. 067 . 065	. 071 . 070	. 000 . 079	.100		. 033	. 039	- 042	. 247	359				. 032	. 036	. D45 I
		24		. 054	.064	.068		.098 1 1		. 033	. 039	.041	.047	254				. 032	. 036	- 045
		25		. 053	.062	.067	. 017 . 015	.095 I		.032	. 039	.041	. 046		104			. 032	- 034	. 045 #
	1	43	• •	. 033	.002	. 047	. 0/3	.093 1 1	45 1,1	. 012	. 030	.041	. 546	.057 - 1	10: 1		5 .030	. 032	. 036	.044
	ı	26	4.1	. 052	.051	. 065	. 074	-092 1	66 11	. 032	.075	. 040	. 046	.35"	106		5 . 329	. 031	. 036	- 044 1
		27		. 051	. 040	.064	. 072	.090		. 632	. 034		. 545		107			031	. 035	
			ii.		. 059	.063	.071	.088 1 1		. 031	. 037	.040	. 045		IC# 1			.031	. 035	. 044)
		25		.049	.058	062	. 070	.087 1		. 031	. 037	-040	.045		109			.031	. 035	.044
		30		.048	.057	.051	. 069	.085 1		031	. 017	. 039	C46	255				.031	.035	.043 1
		•			147.		,		, •		- 02 /	. 033			-10.,			-031	. 033	.043 1
	,	31	11	. 047	. 054	. 060	. 066	.064 f f	71) :	. 031	. 036	. 039	. 244	. 231		.c:		. 031	. 035	. 063 (
		32		. 046	. 055	059	. 066	.082 1 1		030	. 036	.039	244		111			.011	.035	.063 (
		33		. 046	. 054	058	. 065	.081		030	. 036	.038	. 243		115			010	. 034	.043
	ı	34	i t	- 045	. 053	. 057	. 064	.000 1 1		030	. 036	. 036	. 243	253	124			. 030	. 034	.042
1		35			. 053	. 054		.079 1 1		. 030		. 038	. 242					. 030	. D34	.042 1
		•																.030		, 474
,	1	36	E I	.044	. 052	. 055	. 063	, Q78 I I	76 ti	. 030	. 035	. 038	.042	.253 (115 (.02	. 529	.036	. 034	.042
	1	37	17	. 043	. 051	. 055		.076 1 1	77 11	029		. 637	245	25.	:::			030	034	.042
-	ı	30	н	- 042	. 050	. 054	. 061	.075 I E	70 11	. 029		. 937	. 242		118			. 030	. D34	.042 1
-	1	39	6.1	. 042	. 050	. 053	. 060	.074 1 F	75 11	. 029		.037	04.		119			.030	. 033	.041
-	ı	40	11	. 041	. 049	. 052	. 059	.073 1 1	80 11	. 029		.037	041		120 1			.025	.031	.041
	***		••			E===== :	******	*****	*****	*****				******						

0.38087957 T 3T Pm = ((0.03150509 T F = (0.0051 / 1.1 F + (0.0020 / 5 F)) / T where: T = Duration in Sours

PS = Pm(1,290) P10 = Pm(1,532) P15 = Pm(1,637) P25 = Pm(1,830) P100 = Pm(2,294)

where: Pm is the Statistical Mean Annual Precipitation PS, etc. are the 5-year, etc. Statistical Mean Precipitation

ALAMEDA COUNTY FLOOD CONTROL

AND

WATER CONSERVATION DISTRICT

UNIT RAINFALL INTENSITY

DATE: FEBRUARY 1987

UNIT RAINFALL INTENSITY FACTOR CHART, IX PER HOUR

		**		******				*****	•	******			****		****		***				a =====	* *****	*******
					RECURS	HENCE	HTERYAL		•	t Te i	·	RECURI	HENCE	I WEER VAL			1 1	te i	ı	_RECUR	RENCE	HTTEVA	,
1	(m	100	ш	5 TRE	10 TES	15 TM	1 25 YRS	100 YRS)		1 5 17 12	0 10 Y764	13 YH	25 Y75	CCT		i t	E DJ F	. 5 1714	10 TR	\$ 15 TR	25 TH	100TES
٠	w 144		••			*****		****	-				4P# ***	* *****	****			***				×**	******
		31 I		. 027	. 027	. 029	. 033				. 026	. 023	. 025	. 028				01 +		. 021	. 022	. 225	.011
		33 1		. 023	.027	. 029	. 033			162 1		. 623	. 025	. 020				02 1		.021	. 02 2	. 225	.031 1
		13 1		. 023	. 027	. 029	. 033			163 1		. 023	. 025	. 028				03 11		- 021	.022	. 025	.031
		16 1		. 023	. 037	. 229	. 033			164 11		. 023	. 025	. 078			_	04 11		.021	. 022	. 925	.031
ŧ	12	15 1	1	. 023	. 037	. 029	. 033	. 040 1	1	165 11	. 020	. 023	. 025	.028	. C3		. 3	05 t i	.017	- 021	. 027	. 225	-031 L
_																							
		16 1		. 023	.027	. 029	. 032			166 (. 023	. 025	.02#				06 11		.021	. 072	. 025	. 031
		7 1		.023	. 037	. 029	. 072			167 14		. 023	. 025	. 020				97 11		. 020	. 011	. 025	.031
		1		.022	. 027	. 920	. 632			160 11		. 023	. 025	. 026				11		. 010	. 033	. 025	.031
		9 1		. 022	. 027	. 020	. 032			169 ()		. 823	- 034	. 028			-	99 16	-	- 920	. 022	. 025	.010
•	.,	•	•	. 947	026	. 020	. 032	. 090	'	170 (1	.019	. 023	. 024	. 028	, 039	•	. 2		.017	930	. 022	. 025	.030 (
	12	1 1		. 022	. 026	. 038	. 032	450 :		171 ()	.019	. 023	. 024	. 027	. 034		• • •		.017	. 620	. 022	. 024	. 030
		2 1		. 022	. 026	. 028	. 032			172 11		. 023	. 024	. 627	. 924					. 020	.022	. 024	. 030
		3 1		. 822	. 026	070	.031			173 11		. 023	. 024	. 027	. 034					. 620	. 022	. 324	. 010
		4		. 022	. 026	028	. 031			174 11		. 023	. 024	677	-034					. 020	.021	. 024	010
		5 1		. 022	. 026	028	. 031			175 11	_	. 022	. 024	027	. C34		-		.017	020	. 021	.024	010
•	•	•	•						•		,			·					••••				
,	13	6 31	ı	. 022	. 026	. 025	. 031	.039 (1	176 11	. 019	. 022		. 027	. 034		21	6 16	.017	. 82.	41	. 024	. 010
		7 11		. 022	. 026	. 827	. 031			177 11	017	. 023	. 024	027	. 03 3				.017	020	.021	. 924	.010
				. 022	. 026	.027	. 031			178 11	.019	. 022	. 024	027	. 333				.017	020	. 021	.024	.010
		9 11		. 021	. 025	. 027	. 031			179 11	. 617	. 022	. 024	.027	. 033	1 1	21	9 11	.017	. 020	.021	. 014	010
•	14	. 11	,	.021	. 025	. 027	.031			180 11	. 019	. 022	. 024	. 037	. CEI	1 1	22	0 11	.017	. 020	. 021	. 024	. 030
٠.																							
ı	14	1 11	١.	. 021	. 025	-027	.031	. 036 1	1	181 ##	.019	, 02 2	. 82€	. 027	. 033	1 6	22	1 11	-017	. 020	- 021	. 374	010
ı	142	2 11	١,	. 021	. 925	. 027	. 030	.028 (ı	182 (1	. 019	. 022	. 023	. DZ7	. 333	• •	33	2 11	.017	. 020	. 021	. 024	.029
1	14.	3 11	٠.,	. 021	. 025	. 027	. 030	. 036 1	ſ	183 ()	. 01 6	. 022	.023	. 024	, 333	1 (22	9) (.017	. 020	. 021	.024	029 1
		4 1 1			. 025	. 027	. 030	.037 (.010	. 022	. 023	. 026	. 033				.017	. 020	. 021	. 024	229
ì	11	5 1 1		. 021	. 025	027	. 030	.037 1	ŀ	185 (1	.010	. 023	. 023	- 016	. 533	1 1	22	5 1	. 916	. 020	. 921	. 224	079
		_																_					
		i 1 e			, 025	. 024	, 030	.037 1			. 010	. 022	. 623		. 333				.016	.020	.021	. 524	029 1
		7 1 1			. 025	.026	. 030	.037 1			-010	. 022	. 023	.076	. 333				.016	.019	. 021	, 023	029
		111			. 025	. 026	. 030 . 030	.037 1		166 11		. 022	. 023		. 35:				, 515	.011	.021	. 023	621
	-	111			. 025	. 026					.010	. 022	. 023		- 932				. 016	.019	-021	. 253	023
•		3 ()	•	021	. 024	. 026	. 029	.037	•	.70 11	.01	. 021	. 023	. 036	. 311	٠,	4.51	• • •	. 316	. 019	. 071	. 233	CIT
1	151			020	. 024	.024	. 029	.036 1	ı	193 11	. 014	. 021	. 023	. 025	. 232		21	: r:	216	. 019	.021	. 023	.023
		 ! !!			024	. 026	.029	.026			. 014	.021	. 023		. 031				914	019	.021	223	011
					.024	. 026	. 029	.034			.016	. 021	. 023		. 232				. 316	. 019	.020	. C23	029
		116			. 024	. 026	. 029	.036 1			.010	. 071	. 023		. 232				.216	. 01 7	.020	. 523	. 023
					024	. 026	. 029	.036 1			.010	.021	. 023		. 333				316	. 019	. 020	. 223	.021
			•	. • -			,-														,		
1	156	14		020	. 024	. 025	. 029	. 036 1		156 (1	.010	.021	. 023	. 015	. 352	(}	230	11	. 51 6	. 019	.020	. 223	. 029 1
		11			. 024	. 025	. 029	.036 1			.010	.021	. 032		. 931				.016	. 019	.020	. 223	.018
ı	150	Ю			. 024	.025	. 029	.036 E	ı	196 11	. 010	.021	. 022		. 351	1 1	231	10	.016	.019	. 020	. 0:3	.028
		11		020	074	. 025	. 025	.035	1	199 11	. 010	.021	023	. 025	. 231	1 1	235	111	314	.019	. 020	. 023	028
	160	11			. 024	. 025	.028	.035 F			. 010	. 021	. 022		. 930				.016	.019	. 020	. 023	.021
		***	••		*****	*****		******	* 4	****	*****	******			****	: •				• • • • • •	*****	****	
																Ŀ	4 6	, 21 <u>5.</u>	. 2254	. 0067	00 2	2031	. 27 22

where: T Duration in Bours

P5 * Pm(1,290) P10 * Pm(1,592) P15 * Pm(1,637) P25 * Pm(1,650)

where: Pm is the Statistical Mean Annual Precipitation PS, etc. are the 5-year, etc. Statistical Mean Precipitation

ALAMEDA COUNTY FLOOD CONTROL
AND

WATER CONSERVATION DISTRICT

UNIT RAINFALL INTENSITY

DATE: FEBRUARY 1987

RUNOFF FACTOR SLOPE AND INTENSITY ADJUSTMENT CHART PG 1 OF 3

C * Initial Runoff Factor

C+Cs * Runoff Factor + Slope Adjustment

C' = Design Runoff Factor

To determine C' begin with the initial runoff factor C in the upper left of the chart. Draw a line to the right until you meet a ground slope greater than the average ground slope of the incremental drainage area. Next draw a line down until you reach a rainfall intensity greater than your design intensity. Next draw a line to the left to find your design runoff factor C'

	***	***	****	***	**==	****	****	***	****	****	****	***	****	****	. D###	****		***	****	*4**		****	****	****	
	1 BI	GIN I		12.15				1					C + C	<u>.</u>	,									1 5	
	1 102	LOWII	. 10	- 21	. 32	. 33	. 24	. 25	. 26	- 27.	. 28	. 29	. 30	.31	- 32	. 33	34	. 25	. 34	. 37	. 30	. 39	. 40	1 1	
	ALM S	****	***=		****	***	****	***	***	***	****	*===	***	***	252+	2724	****	麻奈物 属	****	***	****	***	****	***	
	\$	201	2	. 3	4	5	6	7	3	10	11	13	14	16	17	19	20	32	24	25	: 27	29	31	8	
	‡	(30I)				+		2000		200 mm mm han			2	1	5		. 7	9	10	12	-14	15	17	LI	
	ŧ		***														***						3	Q ł	
	1 C	. 501 1																						P 1	
	1																							左 i	
	ŧ		***																					Ā	
	ş ·																							% 1	
	***	*****																						****	
	1	. 201																						ŧ	
	ŧ	. 2111																							
	i	. 2211													~									ŧ	
	1	. 231 1	,																					ł	
	ł		1.07																					•	
	•		1.20		. 94	. 7 9	. 59	. 00			****						-						*		
	I C	, 26H I							. 00							7	**				***	***	-	II.	
	_	. 271 1							- 50	. 00	-	*****	-			, ,	**** *	****.	****		-		~~~	R 1	
	E.	2811	1.5#	1.47	1.36	1.24	1.11	. 97	81	. 60	. 96	7.1				****		-					er-efeste se.	T 1	
	+	. 291 1	1.70	1.59	1.48	1.37	1.25	1.12	. 56	. \$1		.00	****		****	7-7-								Z i	
		. 301 1	1-63	1.72	1.41	1.50	1.34	1,26	1.13	- 39	. 12	.41	. 00		-				~~~	*****	******		M-18-24	舞儿	:
	*	. 3111	1.95	1.84	1.74	1.43	1.51	1.40	1.27	1.14	1.00	.43	. 42	. 00	****			****		-		-	-	55	è
	CI	. 321 1																						1	
		.3311	2.21	2.10	2,00	1.89	1.78	1.66	1.35	1.43	1.30	1.17	1.02	. 84	., 53	DD	-,	****	*		-			7	1
		3411																						7 7	
- 3		. 3511																						- i	*
3		3511																						# i	:
. !		3711																						PF I	è
		, 3#1 1																						狂!	
1	9		3.13																			. 00		21. I	1
1	١,	. (0)																					.00	#K #	
,		. 421 I																				. 32	. 58		1
,												-, .								. ,			177	ì	
1		, 431 t , 441 t																						;	1.
												-:			7:							-		•	
•		. 4511			4.4																				
1		. 4711																						1	
- 1		. 4811																						*	
•		4911																A 4							
i		. 501 1																							
1		.5111																						,	
ì		. 5211																						ì	-
ì		. 5311								2 1 2 1				,										î	
,		. 5411										V		.,				-, -						1	
1		. \$51 :																						, i	
1		. 561 1																						1	
1		. 5711																						1	
1		. 561 1																						1	-
		. 591 1	****	****	***	****	***	****	***	****	****	****	9.61	9.21	6.67	g \$7	7.47	7.31	1.32	6.74	6. 17	6.02	5.59	1	
1		- # CH 1	++++	****	****	****	****	****	****	****	***	****	***	****	****	4.48	1.97 ·	B. 4#	.02	7.54	7.15	6,75	6.37		
ì			****																					i	
1			****																					ŧ	
ì			****																					í	
			****												****										
,	0 a a a	***	****	E***	** **	****	# # # # #	25*2	电空驾客	***	***	****	***	REAR	ST = X	2 #02	****	***	****	****		***		***	

ALAMEDA COUNTY FLOOD CONTROL

AND

WATER CONSERVATION DISTRICT.

RUNOFF FACTOR ADJUSTMENT

DATE: FEBRUARY 1987

RUNOFF FACTOR SLOPE AND INTENSITY ADJUSTMENT CHART PC 2 OF 3

* Initial Runoff Factor

C+Cs = Runoff Factor + Slope Adjustment C' = Design Runoff Factor

To determine C' begin with the initial runoff factor C in the upper left of the chart. Draw a line to the right until you meet a ground slope greater than the average ground slope of the incremental drainage area. Next draw a line down until you reach a rainfall intensity greater than your design intensity. Next draw a line to the left to find your design runoff factor C'

	***	****	養養無理	***	2 3 WE	****	2224	***	****	***	****		****		B###	***	****	***	****	***	****	据常准者	***	***	,
		LOWIE	40	41	#4	43	44	26	45	24			C + C	-	. 49	43	54	• .	22					1 1	
>	表示形	******	****	***	****	****	***	***	***	***			***										****	* *	
	1	. 20(1	31	33	35	37	35	41	43	45								***		. ****	**		end	S 1	
	ŧ	يسر	17	19	31	23	25	27	29	32			39										end	-	
					2	-7		11			17		22		27 6			36	33	42 20	45		end	Q I	
	10	501 601		****	****												11	14	17	4¥ 	24	47	21	# T	·
	1	704 1	***		****			****	-												***		TXXX	- T	
	ŧ.	. 001																					nest	1	
	***	***																					医侧侧型	***	
	1	. 40()	. 00	****	***	****	****	*				***				***		****			*		****	ŧ	
	į.	4311		.00	****			****										+							
	1	421	. 93	. 67		66										****								/1	
	i	4411	1.33	1.15	. 35	: 70	. 00	-		****							***				****			1	
	ř	4511	1.51	1.35	1.17	. 97	. 71	. 00					***					***		****	****			. 1	
	I C	. 461 1	1.70	1.54	1.37	1.19	. 98	. 72	. 00				****							-,-				Ιġt	
	3 = 4	4711	1.11	1.73	1.56	1.39	1.20	. 55	. 73	.00	****	****	****		****	***		***		وجحم	****			麗田	
	10	491	2.5#	1.93	1.75	1.59	1.41	1.22	1.01	. 74	.00							****	, 	********	edic Niponi Pla.	7		T 1	
	i÷ iCs:	(501)	3.20	2,12	4 14	1.77	1.8%	1 44	1.24	1.44	1.04	74	nn											N 1	
	1 +	.5311	2.71	2.54	2.37	2.20	2.03	1.86	1.68	1.49	1.28	1.05	.72	. 00		****					Marine Sur Sir	*************************************		5 i	
		. 521 1	2.95	2.76	2.50	2.43	2.25	2.08	1.90	1.71	1.51	1.31	1.07	.78	. 00	*		****	*			-		Ţ i	
	į	. 531 1	3.27	3.04	2.05	2.47	2.49	2.31	2.12	1.94	1.74	1.54	1.33	1.09	7.9	.00		**			m-main-mi	****	***	7	
	\$ · ·	. 541 1	3.52	3.32	1.12	2.53	2.74	2.55	2.36	2.17	1.98	1.7\$	1.50	1.36	1.11	. 83	. 00	****		*****;	****		****	A.1	
	ŧ	. 55(1	3.84	3.53	3.42	3.22	3.01	2.#2	2.62	3.42	2.23	7.03	1.82	1.61	1.36	1, 13	. 82	. 00			-		***	Į į	
	i.	.5611 .5711																						N I	
	i	.5811																						11	
	t	. 5914																						麗日	
	\$. 4011	6.37	4.01	5.45	5.32	5.00	4.70	4. 40	4.12	3.84	3.59	3.32	3.06	2. \$2	1.57	2.32	2.02	1.02	1.55	1.26	. 91	. 00	F 8	
	1	. \$111																					. \$3	j	
	‡ -	. 6211		_																				1 1:	
	1	6311 6411	~																						
	ž	65I f																					-	1	
	ř.	6611																						ŧ.	
	F	, 671 1																						ŧ	
	ŧ	. 68: 1																						* .	
	I.	. 691 I																						1.	
	1	7111	****	****	****	****	****	****	****	4+++	****	****	****	****	****	****	****	****	****	****	****	2-13 4 31	9 . # f	•	
	1	7211																						i:	
	i	7311	***	***	***	****	***	****	****	****	***	****	****	++++	****	****	****	***	****	***	***	****	****	i	
	1	. 2411																						ŧ	
	*	. 7511																						I.	
	1	7611											****												
	ž ž	7811																						1	٠
	ì	7911																						1	
	ŧ	#011																					***	1	
	7 ***	****	*# # # #	***	***	****	***	医机锥状	****	***	****	***	***	***	***	****	***	***	***	***	****	∓≠≖≈	***	英型老师	

ALAMEDA COUNTY FLOOD CONTROL

AND

WATER CONSERVATION DISTRICT

RUNOFF FACTOR ADJUSTMENT

DATE: FEBRUARY 1987

& ...

RUNOFF FACTOR SLOPE AND INTENSITY ADJUSTMENT CHART PG 3 OF 3

C = Initial Runoff Factor C+Cs = Runoff Factor + Slope Adjustment C' = Design Runoff Factor

To determine C' begin with the initial runoff factor C in the upper left of the chart. Draw a line to the right until you meet a ground slope greater than the average ground slope of the incremental drainage area. Next draw a line down until you reach a rainfall intensity greater than your design intensity. Next draw a line to the left to find your design runoff factor C'

-	*****	* ***	-			. ***	****																
1.	EGIR I	ı				•			,			C + 0					****	***		****	****	==**	
1 2	ELOW I	60	0.6	1 .5		64	65			7 6		.70	~	**									1 t
					-				, . .			2=>*		/2	.13	.74	. 75	. 74	. 77	. 78	. 79	. 80	11 1
1	. 201	45		~									****		***	****				****	****		****
	. 301	45				·																end	l S t
ŧ	. 401 1	45										·										end	£ı
10		31	35	39	49	44				-,												end	101
t	(.60)					17																end	PI
i					- 13	*/	44	1 27	33	39	45				,-							end	Z t
i	500											2	•	17	27	39	45					end	
*=:						~						**				_							5.1
	. 600 1						***	**		B4++		****	****	****	****	****		9789	veza	èèsz	****		tres
í	.6111	.00																					- 1
i		1 33	. 00																				1
i	6361	1 70	1 37	.00				,				•											i
í	. 641 1	1.70	1.3/	. 78	.00							<u> </u>			*					10 7			i
		2.04	1./0	1.41	1.01	.00						<u> </u>								4.3			i
i c	. 651 (2. 17	4.10	1.52	1.46	1.04	- 00					445-6	,							-7-			i
	6611 6711	2.70	2.60	2.23	1.90	1.51	1.07	. 00															T i
ic	5017	1.32	3.12	2.74	2.36	1.90	1.58	1.11	. 00											Live			9.1
	681-1	. 21	3.75	3.32	2.90	7. 49	2.08 j	1.65	1.15	. 00		4-4-								-t-i			7
100	9311	3. IZ	4.30	4.04	3.55	3.09	2.541	2.14	1.73	1 20	An.								2.0	41			2
100	<u> </u>	4.37	2.00	3.00	1. 10	3.74	1.321	2.83	2.32	1.62	1.26	. กล			. نند		، کولی						
																							•
1 C1			3	0.4B	1 - 30	6.37	5.49	4.70	3.98	3. 32	2.69	2 08	1 41	- 00									
!	7314	****	****	****	****	₽.83	7.51	6.37	3.37	4.49	3.69	2.96	2.25	1.51	.00				والأديد	ŧ₩Ţ.			-
								9. 31	7 73	6 27	6 77	4 41	* **	7 45 1					*72	*** ×			ŷ
												****						_					
	. ,									4 + + +	4444	***											Â
1											****												7 F
!																							/ I
Ι.								••••	****	****	****		****		***	*** *	4	***				00	# ·
***	*****	***	E # 2 5	755F	***	*=== 1			*===	***		***	***		*** :			*** 1		26× -			R
																				•		1	/ - 4

ALAMEDA COUNTY FLOOD CONTROL

WATER CONSERVATION DISTRICT

RUNOFF FACTOR ADJUSTMENT

DATE: FEBRUARY 1987

TIME (hra.)	RAINFALL RATIO Px/ (inches/inches)	
and the state of t		n varie para vain vari ratio ratio para para para para para para para par
.0	.0000	
.5	.0135	
1,044 (1.16)	.0382	
1.5	.0518	NOTE:
2.0	.0860	
2,5	.0810	The ordinates in this figure ere
3.0	.0967	for the Alemeda County Type I
3.5	.1131	Rainfall Distribution beginning
4.0 4.5	1304	with time $t = 0$ and increasing in
4.5 5.D	.1481	half-hour increments. This
5.5	.1690	Distribution is based on the SCS
6.0	.1903	Type I, 24 hour temporal reinfall
8.5	.2135	distribution. See Reference 1.
7.0	.2389	
7.5	.2675	This distribution shall be used to
8.0	.3001	calculate design flows when using
8.5	.3385	the unit hydrograph method.
8.0	.3852	
8.5	.4570	MASS PRECIPITATION VALUES
10.0	.5 80 6	24-HOUR STORM:
10.5	,8975	
11.0	.7804	Frequency Hass Precipitation Value
11.5	,7552	10 yr. 0.1608
12.0	.7760	15 yr. 0.1728
12.5	.7935	25 yr. 0.1944 100 yr. 0.2411
13.0	.8083	
13.5	.8246	Precipitation - (Mass Precip. Value) x
14.0	.8379	(Mean Annual Precipitation)
14.5	.8502	
15.0	.8616	en de la companya de La companya de la co
15.5	.8724	
16.0	.8826	
16.5	.8923	
17.0	.9016	
17.5	.9104	
18.0	.9188	
18.5	.9269	
19.0	.9347	•
19.5	.9422	
20.0	.9494	
20.5	.9585	
21.0	.9633	
21.5	.9898	
22.0	.9762	
22.5	.9824	
23.0	.9884	•
23.5	.9943	
24.0	1,000	
AMEDA COUNTY FLOOD CONTRO	ALAMEDA C	OUNTY DATE: SEPTEMBER 198
NOTE OF THE PROPERTY OF THE PR		
WATER COSSERVATION: DISTRICT	TYPE STOR	M DIST. FIGURE 11

DATUM PLANES 8.616 City of San Francisco (City Engineer 12/10/64) 5.730 * Highest Tide at Pt. San Quentin Estimated (State Chart 11/19/51) 5.470 * Highest Tide at Pt. Richmond Estimated (State Chart 11/19/51) 5.200 * Highest Tide at Presidio 12/24/40 (State Chart 11/19/51) ON THESE DATUM PLANES 0.00 IS ABOVE MEAN SEA LEVEL THE MANBER OF FEET INDICATED. City of Alameda (City Engineer 1/7/65) Berkeley City of Oakland (City Engineer 12/10/64) * N.H.H.M. at Pt. Richmond (State Chart 11/19/51) 3.17 3.00 2.87 San Leandro (Prior to 1960)
* S.P.R.R. Coast Division (2.61 M.H.H.W. at Presidio State Chart 11/19/51) 2.80 2.03 ** H.H.H.W. at Presidio (State Chart 11/19/51) VARIES EBRUD Mokelumne Aqueduct (Varies - See Published Lists' Alameda County - Alameda County Flood Control & Conservation District Albany Bay Area Rapid Transit District (Verified by R.M. Towill Inc.) California Division of Highways Dist. IV (Since 1956) Central Contra Costa Sanitary District Concord USCAGS Mean Sea Contra Costa County 0.00 Level Datum of 1929: Contra Costa County Flood Control E.B.M.U.D. El Cerrito (Ord. *7100) Hayward Richmond Richmond - San Rafael Bridge San Leandro (Since 1960) San Pablo Webster St. Tube

DATUM PLANES 0.00 HEAN SEA LEVEL THE ON THESE D 15 BELOW H NUMBER OF

-1.44 San Pablo Reservoir (At San Pablo Dam)
-1.51 San Pablo Reservoir (At San Pablo Dam)
-2.171 Richmond (Prior to 1962)
-2.77 M.L.L.W. Pt. San Quentin (State Chart 11/19/51)
-2.83 M.L.L.W. Pt. San Pablo (State Chart 11/19/51)
-3.10 M.L.L.W. Pt. Richmond (State Chart 11/19/51)
-3.10 S.F.O.B.B. & Parallel Bridge, M.L.L.W. at Presidio State
-3.20 Port of Oakland (Since 1959)
-3.817 C.P. Ry. (Western Div. - East Bay) (State Chart 11/19 5)
-4.75 State How al S.F.O.B.R. Fast Bay Annearous (State Chart - 'State Chart 11/19'51 -4.25 * State Hwy. +1. S.F.O.B.B. East Bay Approaches (State Chart 11/19/5) -5.50 * Lowest Tide Presidio (State & E.B.M.U.D.) -8.600 * Bottom Presidio Staff Gage (State Charts)

- -97:011 * Posey Tube Datum -100:00 E.B.M.U.D. Water Pollution Control Div.

- An elevation based on a special datum may be converted to an elevation based on USCAGS mean sea level datum by adding the indicated difference.
- All elevations are vertical distances above or below a level surface. This surface or level datum is assumed
 to remain at a fixed elevation whereas the record elevation of bench marks, may vary due to discrepancies,
 movement of marks, and readjustment of level lines. For these reasons a conversion chart is limited as to accuracy and on any project where a dependable relationship of level data is required a field check should be made.
- 3. * Information obtained in 1959 or earlier and not verified for this edition.

ALAMEDA COUNTY FLOOD CONTROL

WATER CONSERVATION DISTRICT

BAY AREA DATUM PLANES

DATE: FEBRUARY 1987

TIDAL SUMMARY - BACKROUND DATA

STA	TION	TIDAL ELEV	ATION - NGVD
NO.	DESCRIPTION	MHH	100-YR
4816	Berkel ey	3.3	5.4
4779	Matson Wharf	3.4	6.3
4764	Oakland Inner Harbor	3.4	6.5
4750	Alameda Naval Air Sta.	3.4	6.7
4746	Park Street Bridge	3.3	6.4
4711	Oakland Airport .	3.7	6.8
4688	San Leandro Channel	3.8	6.9
4637	S. Mateo Br. East end	3.9	7.0
4509	Dumbarton Br	4.2	7.5
4506	Newark Slough	4.4	7.5
4519	Mowry Slough	4.3	7.4
4575	Coyote Ck/Alviso Slough		8.1

Source: Refenence No. 11.

The figures above are given for backgound information. The values to be used in design are to be found on the contour maps of San Francisco Bay, Pages 40 and 41 for the Mean Higher High Water (MHHW) and the 100-Year Tides, respectively.

MANDA COUNTY HOOD CONTROL

WATER CONSERVATION DISTRICT

TIDAL SUMMARY

DATE: FEBRUARY 1987

SECTION A - APPLIES WHEN 100-YEAR STORM IS CONTAINED WITHIN EXISTING FACILITY

(a) Slope of bank shall be 2-1/2 horizontal to 1 vertical or flatter, as determined by the Deputy Director - Design.

SECTION B - APPLIES WHEN THE EXISTING FACILITY IS LARGE ENOUGH
TO ACCOMODATE SIDE ENCROACHMENT.

NOTE: For details concerning setback criteria, see Ref. 10.

ALAMEDA COUNTY FLOOD CONTROL AND

WATER CONSERVATION DISTRICT

SETBACK CRITERIA

DATE: FEBRUARY 1987

Tract/Parcel	Мар	No
Review Deposi	it -	\$

DRAININGE REVIEW CHECK LIST

The improvement plans accompanying this check list are submitted for your review. They have been prepared by me or under my direction and checked for conformance with the approved tentative map (or plan), the conditions of approval & the Alameda County Flood Control and Water Conservation District "Hydrology & Hydraulics Criteria Summary."

_	- -	
	Engineer's Signature Date	REVIEW SUBMITTIAL
	Engineering Firm-Address	2 Complete Sets of Plans 1 Set of Hydrology and
	Contact Person, Title & Phone No.	Hydraulic Calculations 1 Copy of Hydrology Map
	Developer	1 Copy of Structural Calculations
	Address	Plan Review Deposit
	Contact Person, Title & Phone No.	4
	Assessor's Parcel No.	
not a	RUCTIONS: Place a check mark to indicate pplicable next to each item. Any requests iting & attached herewith.	you comply or N/A to indicate for exceptions shall be made
	Hydrology-Hydraulics	
	1. Contour maps - continuing for 100' 2. Drainage area maps (40 scale or la site topography, points of conc designations that are matched with The drainage area map must show, to the project site.	rger) shall show on and off- entration and sub-areas with the hydrology calculations.
	3. Provide hydrology & hydraulic c latest edition of the "Hydrology & prepared by ACFC & WCD; hereina Summary.	Hydraulics Criteria Summary*
	4. Freeboard in channels, structures the Criteria Summary.	, and pipes shall comply with
	 Calculations are to include a freeboard at structures, losses, h super or subcritical flow. 	CL, HGL, FL, Q, A, Sf, Hv, ydraulic control assumptions,
	6. After the hydraulic calculations he EGL, HGL, FL, Q, and So on the pro-	ave been approved, delineate
	7. All starting water surface elevated verified and documented. When natural watercourses and no obvavailable, begin upstream or dictates to point in question.	computing beginning HGL in ious point of control is downstream 500' as control
	9. Improvement Plans are to be on sta 9. Grading Plans must clearly show th from adjacent uphill properties flow onto adjacent downhill proper 10. Delineate areas within FEMA flood	at runoff is being picked up and is not being allowed to ties.
	Easements	
	11. Show off-site drainage improvements.	ments (plan & profile) and
	12. Indicate storm drain easement widt 13. Submit sufficient X-sections to ve	
	channels.	_
	14. ACFC & WD maintenance roads are standards.	
	15. Minimum center-line radii for ACFO	& WCD maintenance roads is

16. Show fences and gates along ACFC & WCD easements and rights of

Structures

- _____17. Structures shall comply with the latest edition of the Alameda County Public Works Agency Standard Guidelines (District storm drain lines only).
 - 18. Pipes and boxes are to have rounded lip radii of 0.1 D at all entrances.
 - 19. Structures are required where the lateral pipe diameter is greater than 1/3 the main pipe diameter.
 - 20. Structures shall be channelized to 3/4 the thru pipe diameter for velocities in excess of 14 fps.
 - 21. Maximum spacing of CB's or MH's is 400'. Gutter-flow shall not exceed 7-feet from face of curb.
 - Provide structural calculations and details for non-standard structures.

<u>Pipes</u>

- 23. Minimum invert slope is 0.0007.
 - 24. Flow from sidedrains are not to enter the main system at adverse angles.
 - 25. Beveled RCP lengths must be specified (bevel one or both ends).
 B.C. and E.C. stationing and curve data are to be provided.
 - 26. Minimum cover over pipes shall satisfy City requirements or shall be 3' unless special design and calculations are submitted.
 - 27. Pipes carrying flows of 14.0 fps or higher shall be thick-walled RCP and have double rubber gasketed joints in fill areas and rubber gaskets or smooth, concentric joints in all other areas. The concrete protective cover from the inner surface to the reinforcement shall be 2" minimum. Corrugated metal pipe shall be paved for the lower 1/3 of the pipe.
 - 28. Minimum pipe diameter is 12".
 - 29. Pipes are not to have both horizontal and vertical curves at the same location. Show curve data.

Channels/Creeks

- 30. Minimum invert slope is 0.0007.
- 31. Maximum velocity in improved earth channels shall be limited to 6 fps. Minimum velocity shall be 2 fps.
 - 32. Improved earth channel side slopes shall be 2-1/2:1 or less steep as specified by the project soils report.
 - 33. Lined channel side slopes shall be designed to satisfy any concerns noted in the project soils report.
 - 34. Note areas to be cleared of structures, trees, brush and debris within watercourses.
 - 35. Watercourses to be dedicated to the District for maintenance shall comply with requirements specified in the Criteria Summary.
 - 36. Building setback lines shall be indicated on the plans and location verified with X-sections (see Oxd. No. 82-18).

Erosion Control

37. Erosion control measures, if reviewed by the District, are to be designed to Association of Bay Area Governments standards.

The engineer will be notified should additional materials be required to complete the review process.

This memo shall serve as clarification of the requirements set forth in Section 2.9.2 "Detention Facilities" in the Alameda County Flood Control & Water Conservation District Hydrology and Hydraulics Criteria Summary.

For proposed development projects which are upstream of District facilities that were not designed to carry 100 year discharge or where proposed developments are upstream of a FEMA 100 year flood plain, post development storm water runoff must not exceed predevelopment runoff for both the 15 and 100 year events.

Analysis of pre-development runoff must be based on a thorough assessment of the existing land use, land cover, existing storm water holding facilities, including cattle ponds and naturally occurring ponding areas, and the existing on site conveyance system. Once the exiting runoff analysis has been approved by the District, the required detention pond facilities must be designed such that post-development runoff does not exceed predevelopment runoff for both the 15 and 100 year events.

For smaller development projects, with post-development runoff of less then 5 cfs for the 100 year event, the requirement that post development runoff not exceed pre-development runoff for the 100 year event does not apply. For these projects, when the District determines that a detention pond is necessary, the pre/post development runoff limitation will be based on a 15 year event, however, the emergency spillway design must be based on the 100 year discharge.

For infill projects with positive drainage, compliance with Hydrograph Modification Plan (HMP) requirements may be sufficient, provided that the site is not within a FEMA designated AH Zone and where there is no historic record of flood water ponding.

This requirement must be consistently applied in all Flood Zones and for all projects for which the District has required mitigation in the form of a detention pond.

